3.510 \(\int \frac {\sec (c+d x)}{(a+b \sec (c+d x))^3} \, dx\)

Optimal. Leaf size=133 \[ \frac {\left (2 a^2+b^2\right ) \tanh ^{-1}\left (\frac {\sqrt {a-b} \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a+b}}\right )}{d (a-b)^{5/2} (a+b)^{5/2}}-\frac {3 a b \tan (c+d x)}{2 d \left (a^2-b^2\right )^2 (a+b \sec (c+d x))}-\frac {b \tan (c+d x)}{2 d \left (a^2-b^2\right ) (a+b \sec (c+d x))^2} \]

[Out]

(2*a^2+b^2)*arctanh((a-b)^(1/2)*tan(1/2*d*x+1/2*c)/(a+b)^(1/2))/(a-b)^(5/2)/(a+b)^(5/2)/d-1/2*b*tan(d*x+c)/(a^
2-b^2)/d/(a+b*sec(d*x+c))^2-3/2*a*b*tan(d*x+c)/(a^2-b^2)^2/d/(a+b*sec(d*x+c))

________________________________________________________________________________________

Rubi [A]  time = 0.18, antiderivative size = 133, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, integrand size = 19, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.316, Rules used = {3833, 4003, 12, 3831, 2659, 208} \[ \frac {\left (2 a^2+b^2\right ) \tanh ^{-1}\left (\frac {\sqrt {a-b} \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a+b}}\right )}{d (a-b)^{5/2} (a+b)^{5/2}}-\frac {3 a b \tan (c+d x)}{2 d \left (a^2-b^2\right )^2 (a+b \sec (c+d x))}-\frac {b \tan (c+d x)}{2 d \left (a^2-b^2\right ) (a+b \sec (c+d x))^2} \]

Antiderivative was successfully verified.

[In]

Int[Sec[c + d*x]/(a + b*Sec[c + d*x])^3,x]

[Out]

((2*a^2 + b^2)*ArcTanh[(Sqrt[a - b]*Tan[(c + d*x)/2])/Sqrt[a + b]])/((a - b)^(5/2)*(a + b)^(5/2)*d) - (b*Tan[c
 + d*x])/(2*(a^2 - b^2)*d*(a + b*Sec[c + d*x])^2) - (3*a*b*Tan[c + d*x])/(2*(a^2 - b^2)^2*d*(a + b*Sec[c + d*x
]))

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 2659

Int[((a_) + (b_.)*sin[Pi/2 + (c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> With[{e = FreeFactors[Tan[(c + d*x)/2], x
]}, Dist[(2*e)/d, Subst[Int[1/(a + b + (a - b)*e^2*x^2), x], x, Tan[(c + d*x)/2]/e], x]] /; FreeQ[{a, b, c, d}
, x] && NeQ[a^2 - b^2, 0]

Rule 3831

Int[csc[(e_.) + (f_.)*(x_)]/(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[1/b, Int[1/(1 + (a*Sin[e
 + f*x])/b), x], x] /; FreeQ[{a, b, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 3833

Int[csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> -Simp[(b*Cot[e + f*x]*(a
 + b*Csc[e + f*x])^(m + 1))/(f*(m + 1)*(a^2 - b^2)), x] + Dist[1/((m + 1)*(a^2 - b^2)), Int[Csc[e + f*x]*(a +
b*Csc[e + f*x])^(m + 1)*(a*(m + 1) - b*(m + 2)*Csc[e + f*x]), x], x] /; FreeQ[{a, b, e, f}, x] && NeQ[a^2 - b^
2, 0] && LtQ[m, -1] && IntegerQ[2*m]

Rule 4003

Int[csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_))
, x_Symbol] :> -Simp[((A*b - a*B)*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m + 1))/(f*(m + 1)*(a^2 - b^2)), x] + Dis
t[1/((m + 1)*(a^2 - b^2)), Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)*Simp[(a*A - b*B)*(m + 1) - (A*b - a*B
)*(m + 2)*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, A, B, e, f}, x] && NeQ[A*b - a*B, 0] && NeQ[a^2 - b^2, 0] &
& LtQ[m, -1]

Rubi steps

\begin {align*} \int \frac {\sec (c+d x)}{(a+b \sec (c+d x))^3} \, dx &=-\frac {b \tan (c+d x)}{2 \left (a^2-b^2\right ) d (a+b \sec (c+d x))^2}-\frac {\int \frac {\sec (c+d x) (-2 a+b \sec (c+d x))}{(a+b \sec (c+d x))^2} \, dx}{2 \left (a^2-b^2\right )}\\ &=-\frac {b \tan (c+d x)}{2 \left (a^2-b^2\right ) d (a+b \sec (c+d x))^2}-\frac {3 a b \tan (c+d x)}{2 \left (a^2-b^2\right )^2 d (a+b \sec (c+d x))}+\frac {\int \frac {\left (2 a^2+b^2\right ) \sec (c+d x)}{a+b \sec (c+d x)} \, dx}{2 \left (a^2-b^2\right )^2}\\ &=-\frac {b \tan (c+d x)}{2 \left (a^2-b^2\right ) d (a+b \sec (c+d x))^2}-\frac {3 a b \tan (c+d x)}{2 \left (a^2-b^2\right )^2 d (a+b \sec (c+d x))}+\frac {\left (2 a^2+b^2\right ) \int \frac {\sec (c+d x)}{a+b \sec (c+d x)} \, dx}{2 \left (a^2-b^2\right )^2}\\ &=-\frac {b \tan (c+d x)}{2 \left (a^2-b^2\right ) d (a+b \sec (c+d x))^2}-\frac {3 a b \tan (c+d x)}{2 \left (a^2-b^2\right )^2 d (a+b \sec (c+d x))}+\frac {\left (2 a^2+b^2\right ) \int \frac {1}{1+\frac {a \cos (c+d x)}{b}} \, dx}{2 b \left (a^2-b^2\right )^2}\\ &=-\frac {b \tan (c+d x)}{2 \left (a^2-b^2\right ) d (a+b \sec (c+d x))^2}-\frac {3 a b \tan (c+d x)}{2 \left (a^2-b^2\right )^2 d (a+b \sec (c+d x))}+\frac {\left (2 a^2+b^2\right ) \operatorname {Subst}\left (\int \frac {1}{1+\frac {a}{b}+\left (1-\frac {a}{b}\right ) x^2} \, dx,x,\tan \left (\frac {1}{2} (c+d x)\right )\right )}{b \left (a^2-b^2\right )^2 d}\\ &=\frac {\left (2 a^2+b^2\right ) \tanh ^{-1}\left (\frac {\sqrt {a-b} \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a+b}}\right )}{(a-b)^{5/2} (a+b)^{5/2} d}-\frac {b \tan (c+d x)}{2 \left (a^2-b^2\right ) d (a+b \sec (c+d x))^2}-\frac {3 a b \tan (c+d x)}{2 \left (a^2-b^2\right )^2 d (a+b \sec (c+d x))}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.47, size = 115, normalized size = 0.86 \[ \frac {\frac {b \sin (c+d x) \left (\left (b^2-4 a^2\right ) \cos (c+d x)-3 a b\right )}{(a \cos (c+d x)+b)^2}-\frac {2 \left (2 a^2+b^2\right ) \tanh ^{-1}\left (\frac {(b-a) \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a^2-b^2}}\right )}{\sqrt {a^2-b^2}}}{2 d (a-b)^2 (a+b)^2} \]

Antiderivative was successfully verified.

[In]

Integrate[Sec[c + d*x]/(a + b*Sec[c + d*x])^3,x]

[Out]

((-2*(2*a^2 + b^2)*ArcTanh[((-a + b)*Tan[(c + d*x)/2])/Sqrt[a^2 - b^2]])/Sqrt[a^2 - b^2] + (b*(-3*a*b + (-4*a^
2 + b^2)*Cos[c + d*x])*Sin[c + d*x])/(b + a*Cos[c + d*x])^2)/(2*(a - b)^2*(a + b)^2*d)

________________________________________________________________________________________

fricas [B]  time = 0.51, size = 595, normalized size = 4.47 \[ \left [\frac {{\left (2 \, a^{2} b^{2} + b^{4} + {\left (2 \, a^{4} + a^{2} b^{2}\right )} \cos \left (d x + c\right )^{2} + 2 \, {\left (2 \, a^{3} b + a b^{3}\right )} \cos \left (d x + c\right )\right )} \sqrt {a^{2} - b^{2}} \log \left (\frac {2 \, a b \cos \left (d x + c\right ) - {\left (a^{2} - 2 \, b^{2}\right )} \cos \left (d x + c\right )^{2} + 2 \, \sqrt {a^{2} - b^{2}} {\left (b \cos \left (d x + c\right ) + a\right )} \sin \left (d x + c\right ) + 2 \, a^{2} - b^{2}}{a^{2} \cos \left (d x + c\right )^{2} + 2 \, a b \cos \left (d x + c\right ) + b^{2}}\right ) - 2 \, {\left (3 \, a^{3} b^{2} - 3 \, a b^{4} + {\left (4 \, a^{4} b - 5 \, a^{2} b^{3} + b^{5}\right )} \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )}{4 \, {\left ({\left (a^{8} - 3 \, a^{6} b^{2} + 3 \, a^{4} b^{4} - a^{2} b^{6}\right )} d \cos \left (d x + c\right )^{2} + 2 \, {\left (a^{7} b - 3 \, a^{5} b^{3} + 3 \, a^{3} b^{5} - a b^{7}\right )} d \cos \left (d x + c\right ) + {\left (a^{6} b^{2} - 3 \, a^{4} b^{4} + 3 \, a^{2} b^{6} - b^{8}\right )} d\right )}}, \frac {{\left (2 \, a^{2} b^{2} + b^{4} + {\left (2 \, a^{4} + a^{2} b^{2}\right )} \cos \left (d x + c\right )^{2} + 2 \, {\left (2 \, a^{3} b + a b^{3}\right )} \cos \left (d x + c\right )\right )} \sqrt {-a^{2} + b^{2}} \arctan \left (-\frac {\sqrt {-a^{2} + b^{2}} {\left (b \cos \left (d x + c\right ) + a\right )}}{{\left (a^{2} - b^{2}\right )} \sin \left (d x + c\right )}\right ) - {\left (3 \, a^{3} b^{2} - 3 \, a b^{4} + {\left (4 \, a^{4} b - 5 \, a^{2} b^{3} + b^{5}\right )} \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )}{2 \, {\left ({\left (a^{8} - 3 \, a^{6} b^{2} + 3 \, a^{4} b^{4} - a^{2} b^{6}\right )} d \cos \left (d x + c\right )^{2} + 2 \, {\left (a^{7} b - 3 \, a^{5} b^{3} + 3 \, a^{3} b^{5} - a b^{7}\right )} d \cos \left (d x + c\right ) + {\left (a^{6} b^{2} - 3 \, a^{4} b^{4} + 3 \, a^{2} b^{6} - b^{8}\right )} d\right )}}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)/(a+b*sec(d*x+c))^3,x, algorithm="fricas")

[Out]

[1/4*((2*a^2*b^2 + b^4 + (2*a^4 + a^2*b^2)*cos(d*x + c)^2 + 2*(2*a^3*b + a*b^3)*cos(d*x + c))*sqrt(a^2 - b^2)*
log((2*a*b*cos(d*x + c) - (a^2 - 2*b^2)*cos(d*x + c)^2 + 2*sqrt(a^2 - b^2)*(b*cos(d*x + c) + a)*sin(d*x + c) +
 2*a^2 - b^2)/(a^2*cos(d*x + c)^2 + 2*a*b*cos(d*x + c) + b^2)) - 2*(3*a^3*b^2 - 3*a*b^4 + (4*a^4*b - 5*a^2*b^3
 + b^5)*cos(d*x + c))*sin(d*x + c))/((a^8 - 3*a^6*b^2 + 3*a^4*b^4 - a^2*b^6)*d*cos(d*x + c)^2 + 2*(a^7*b - 3*a
^5*b^3 + 3*a^3*b^5 - a*b^7)*d*cos(d*x + c) + (a^6*b^2 - 3*a^4*b^4 + 3*a^2*b^6 - b^8)*d), 1/2*((2*a^2*b^2 + b^4
 + (2*a^4 + a^2*b^2)*cos(d*x + c)^2 + 2*(2*a^3*b + a*b^3)*cos(d*x + c))*sqrt(-a^2 + b^2)*arctan(-sqrt(-a^2 + b
^2)*(b*cos(d*x + c) + a)/((a^2 - b^2)*sin(d*x + c))) - (3*a^3*b^2 - 3*a*b^4 + (4*a^4*b - 5*a^2*b^3 + b^5)*cos(
d*x + c))*sin(d*x + c))/((a^8 - 3*a^6*b^2 + 3*a^4*b^4 - a^2*b^6)*d*cos(d*x + c)^2 + 2*(a^7*b - 3*a^5*b^3 + 3*a
^3*b^5 - a*b^7)*d*cos(d*x + c) + (a^6*b^2 - 3*a^4*b^4 + 3*a^2*b^6 - b^8)*d)]

________________________________________________________________________________________

giac [B]  time = 0.33, size = 254, normalized size = 1.91 \[ -\frac {\frac {{\left (\pi \left \lfloor \frac {d x + c}{2 \, \pi } + \frac {1}{2} \right \rfloor \mathrm {sgn}\left (2 \, a - 2 \, b\right ) + \arctan \left (\frac {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{\sqrt {-a^{2} + b^{2}}}\right )\right )} {\left (2 \, a^{2} + b^{2}\right )}}{{\left (a^{4} - 2 \, a^{2} b^{2} + b^{4}\right )} \sqrt {-a^{2} + b^{2}}} - \frac {4 \, a^{2} b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 3 \, a b^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - b^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 4 \, a^{2} b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 3 \, a b^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + b^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{{\left (a^{4} - 2 \, a^{2} b^{2} + b^{4}\right )} {\left (a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - a - b\right )}^{2}}}{d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)/(a+b*sec(d*x+c))^3,x, algorithm="giac")

[Out]

-((pi*floor(1/2*(d*x + c)/pi + 1/2)*sgn(2*a - 2*b) + arctan((a*tan(1/2*d*x + 1/2*c) - b*tan(1/2*d*x + 1/2*c))/
sqrt(-a^2 + b^2)))*(2*a^2 + b^2)/((a^4 - 2*a^2*b^2 + b^4)*sqrt(-a^2 + b^2)) - (4*a^2*b*tan(1/2*d*x + 1/2*c)^3
- 3*a*b^2*tan(1/2*d*x + 1/2*c)^3 - b^3*tan(1/2*d*x + 1/2*c)^3 - 4*a^2*b*tan(1/2*d*x + 1/2*c) - 3*a*b^2*tan(1/2
*d*x + 1/2*c) + b^3*tan(1/2*d*x + 1/2*c))/((a^4 - 2*a^2*b^2 + b^4)*(a*tan(1/2*d*x + 1/2*c)^2 - b*tan(1/2*d*x +
 1/2*c)^2 - a - b)^2))/d

________________________________________________________________________________________

maple [A]  time = 0.38, size = 186, normalized size = 1.40 \[ \frac {-\frac {2 \left (-\frac {\left (4 a +b \right ) b \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2 \left (a -b \right ) \left (a^{2}+2 a b +b^{2}\right )}+\frac {\left (4 a -b \right ) b \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{2 \left (a +b \right ) \left (a^{2}-2 a b +b^{2}\right )}\right )}{\left (a \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-\left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) b -a -b \right )^{2}}+\frac {\left (2 a^{2}+b^{2}\right ) \arctanh \left (\frac {\tan \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (a -b \right )}{\sqrt {\left (a -b \right ) \left (a +b \right )}}\right )}{\left (a^{4}-2 a^{2} b^{2}+b^{4}\right ) \sqrt {\left (a -b \right ) \left (a +b \right )}}}{d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)/(a+b*sec(d*x+c))^3,x)

[Out]

1/d*(-2*(-1/2*(4*a+b)*b/(a-b)/(a^2+2*a*b+b^2)*tan(1/2*d*x+1/2*c)^3+1/2*(4*a-b)*b/(a+b)/(a^2-2*a*b+b^2)*tan(1/2
*d*x+1/2*c))/(a*tan(1/2*d*x+1/2*c)^2-tan(1/2*d*x+1/2*c)^2*b-a-b)^2+(2*a^2+b^2)/(a^4-2*a^2*b^2+b^4)/((a-b)*(a+b
))^(1/2)*arctanh(tan(1/2*d*x+1/2*c)*(a-b)/((a-b)*(a+b))^(1/2)))

________________________________________________________________________________________

maxima [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: ValueError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)/(a+b*sec(d*x+c))^3,x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(4*a^2-4*b^2>0)', see `assume?`
 for more details)Is 4*a^2-4*b^2 positive or negative?

________________________________________________________________________________________

mupad [B]  time = 3.18, size = 204, normalized size = 1.53 \[ \frac {\frac {{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3\,\left (b^2+4\,a\,b\right )}{{\left (a+b\right )}^2\,\left (a-b\right )}-\frac {\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\left (4\,a\,b-b^2\right )}{\left (a+b\right )\,\left (a^2-2\,a\,b+b^2\right )}}{d\,\left (2\,a\,b-{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2\,\left (2\,a^2-2\,b^2\right )+{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4\,\left (a^2-2\,a\,b+b^2\right )+a^2+b^2\right )}+\frac {\mathrm {atanh}\left (\frac {\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\left (2\,a-2\,b\right )\,\left (a^2-2\,a\,b+b^2\right )}{2\,\sqrt {a+b}\,{\left (a-b\right )}^{5/2}}\right )\,\left (2\,a^2+b^2\right )}{d\,{\left (a+b\right )}^{5/2}\,{\left (a-b\right )}^{5/2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(cos(c + d*x)*(a + b/cos(c + d*x))^3),x)

[Out]

((tan(c/2 + (d*x)/2)^3*(4*a*b + b^2))/((a + b)^2*(a - b)) - (tan(c/2 + (d*x)/2)*(4*a*b - b^2))/((a + b)*(a^2 -
 2*a*b + b^2)))/(d*(2*a*b - tan(c/2 + (d*x)/2)^2*(2*a^2 - 2*b^2) + tan(c/2 + (d*x)/2)^4*(a^2 - 2*a*b + b^2) +
a^2 + b^2)) + (atanh((tan(c/2 + (d*x)/2)*(2*a - 2*b)*(a^2 - 2*a*b + b^2))/(2*(a + b)^(1/2)*(a - b)^(5/2)))*(2*
a^2 + b^2))/(d*(a + b)^(5/2)*(a - b)^(5/2))

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sec {\left (c + d x \right )}}{\left (a + b \sec {\left (c + d x \right )}\right )^{3}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)/(a+b*sec(d*x+c))**3,x)

[Out]

Integral(sec(c + d*x)/(a + b*sec(c + d*x))**3, x)

________________________________________________________________________________________